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Abstract

With the rapid development of Internet of Things (IoT)
technology, edge computing, as a distributed computing
paradigm, has emerged as a crucial approach for processing
real-time data. This study explores the application of Optical
Character Recognition (OCR) technology in edge networks,
aiming to achieve efficient processing of real-time image
text. We first introduce the fundamental principles of OCR
technology and optimize it for use in resource-constrained
edge devices. By deploying OCR models at edge nodes, we
achieve immediate recognition of real-time image text, sig-
nificantly reducing transmission latency and bandwidth con-
sumption. Furthermore, by employing lightweight algorithms
and model pruning techniques in the model training and infer-
ence processes, we further enhance performance on edge de-
vices. Experimental results demonstrate that our approach ef-
fectively reduces computational resource consumption while
maintaining high accuracy, providing robust support for OCR
applications in edge network environments.

Introduction
With the rapid advancement of IoT technology, an increas-
ing amount of real-time data requires processing on edge
devices to meet the demands for real-time performance and
low latency. The application of OCR technology at the
edge provides robust technical support for efficient process-
ing of real-time image text. By deploying OCR technol-
ogy in edge networks, real-time recognition of image text
can be achieved without relying on cloud computing re-
sources(Reiss-Mirzaei, Ghobaei-Arani, and Esmaeili 2023),
thereby providing powerful support for various real-time ap-
plication scenarios, such as intelligent monitoring and auto-
matic recognition.

Edge computing is a distributed computing paradigm
(Abdellatif et al. 2023) that brings computing resources and
data storage closer to where data is generated, reducing
transmission latency and bandwidth consumption (Chi et al.
2023). In edge computing, edge devices play a crucial role
and can include various IoT devices such as smartphones,
sensors, and cameras (Chai et al. 2023; Cui et al. 2023).

OCR technology is a technique that converts text informa-
tion from images into editable text format (Kim et al. 2022).
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Its basic principle involves extracting text regions through
image processing algorithms and then using pattern recogni-
tion techniques to identify characters in the image as text in-
formation. OCR technology has broad application prospects
in fields such as image processing and text recognition (Li
et al. 2023). However, its application on edge devices faces
challenges and requires optimization to adapt to resource-
constrained environments.

One of the key functions of edge computing is task of-
floading (also known as computational offloading), which
allows computationally intensive tasks of mobile applica-
tions to be offloaded from the user equipment (UE) to an
edge computing host at the network edge. In real-world sce-
narios, OCR technology is actually composed of multiple
sub-tasks (Koti, Khare, and Khare 2023), such as text de-
tection, text recognition, etc. (which can actually be divided
into even more sub-tasks), and each sub-task has different
computational latencies (Liu et al. 2023). When performing
task offloading, it is necessary to consider the transmission
delay between the terminal and the edge, and choosing ap-
propriate models and offloading methods can effectively re-
duce the total delay of the system.

Related work
In recent years, the integration of OCR technology with edge
computing has gained significant attention from researchers
and practitioners. This section provides an overview of the
relevant literature in this field.

Text Detection
The field of natural scene text detection has rapidly evolved
to meet the demands of applications such as optical charac-
ter recognition, and augmented reality. The early Connected
Text Proposal Network (CTPN) (Tian et al. 2016) integrated
sliding windows with region-based methods and used Re-
current Neural Networks to connect disjoint text fragments,
enhancing text detection across various scales and orien-
tations. However, it had limitations in complex scenarios
compared to later methods.TextBoxes++ (Liao, Shi, and Bai
2018), introduced in 2018, employed quadrilateral sliding
windows for effectively detecting text in arbitrary orien-
tations and improved adaptability to different text types.
EAST (Zhou et al. 2017) struck a balance between speed
and accuracy by simplifying the detection process through



Figure 1: Paddle inference product ecosystem schematic.

direct regression, though it had shortcomings in detecting
specific text shapes. PSENet (Wang et al. 2019) used a pro-
gressively expanding scale algorithm to enhance the detec-
tion of texts with complex shapes.DBNet (Liao et al. 2020)
streamlined the detection process with a differentiable bina-
rization module, suitable for various scenarios but still re-
quiring optimization in extreme conditions. CRAFT (Baek
et al. 2019) focused on character-level detection, particu-
larly suited for densely populated text scenes. FCENet (Zhu
et al. 2021) utilized Fourier contour embeddings to detect
complex text shapes without the need for dense annotations.
Overall, from early axis-aligned bounding boxes to con-
temporary arbitrary-shaped text detection, these algorithms
each have unique characteristics that collectively advance
the field. The choice of an appropriate algorithm should be
based on specific applications and requirements.

Text Recognition
Text recognition technology has seen significant advance-
ments in the OCR field, with numerous studies focusing on
enhancing accuracy, speed, and practicality. Semantic Rea-
soning Networks (SRN) (Yu et al. 2020) achieves precise
scene text recognition by integrating multiple modules. Vi-
sionLAN (Wang et al. 2021) introduces a visual language
modeling network, employing a weak supervision method
to generate character-level mask maps. abiNet (Fang et al.
2021) is an autonomous, bidirectional, and iterative model
emphasizing explicit language modeling with an iterative
correction strategy. VitStr (Atienza 2021), based on the Vi-
sion Transformer architecture, balances accuracy, speed, and
computational efficiency in scene text recognition. SVTR
(Du et al. 2022) proposes a single visual model that achieves
competitive accuracy and efficiency without sequence mod-
eling. Together, these studies advance text recognition tech-
nology, enhancing OCR systems’ capabilities.

Edge Computing
With the rapid growth of IoT and wireless networks, the
number and data volume of edge devices have surged, ren-
dering traditional cloud-based centralized processing mod-
els insufficient for efficiently handling edge data (Shi, Pallis,
and Xu 2019). In response, edge computing has emerged,
deploying computing and storage nodes at the internet’s
edge. This approach provides fast-response cloud services
for mobile computing while ensuring scalability and data
privacy in IoT, helping to mitigate brief cloud disruptions
(Satyanarayanan 2017). (Du et al. 2020) introduced an ultra-
lightweight OCR system, highly suitable for deployment on

Figure 2: Cloud-Edge collaborative OCR recognition archi-
tecture.

edge devices. (Du et al. 2021) made improvements to the ex-
isting OCR system. PP-OCRv3 (Li et al. 2022), as an OCR
foundation framework, is an upgrade of its previous ver-
sions, achieving a balance between accuracy and efficiency.

Proposed Solution
System Design
The technical approach of OCR is outlined from two as-
pects: architecture and model. Figure 1 shows a schematic of
the ecological relationship between Paddle reasoning prod-
ucts. Architecturally, to establish a cloud-edge collaborative
structure, PaddlePaddle from Baidu is an open-source deep
learning platform developed from industrial practice. It is
adaptable for servers, edge devices, and various deployment
architectures, encompassing the entire workflow from data
annotation and model training to quantization and deploy-
ment. It also facilitates the conversion of models from mul-
tiple frameworks to the Paddle framework, making it suit-
able for this scenario with its extensive functionality and
support. Paddle is licensed under the Apache License 2.0,
an open-source license favorable for commercial use. The
only requirement is to include the corresponding License in-
formation in the project code, making it suitable for com-
mercial applications. At the model level, OCR operates as
a two-stage recognition system, transitioning from text de-
tection to text recognition. The text detection stage uses
Differentiable Binarization (DB), while the text recognition
stage employs the Convolutional Recurrent Neural Network
(CRNN). A text orientation classifier is added between these
two modules to manage text recognition in various orienta-
tions. The supporting models, PP-OCRv3 and PP-OCRv2,
are integrated within the Paddle framework for ease of use.

System Framework
The OCR system framework is described from three per-
spectives: cloud, edge, and terminal, as shown in Figure 2.

Cloud Server: Responsible for model training and conver-
sion. With its high computational power and large memory,
the cloud server is suitable for extensive data annotation and
training of complex models. The Paddle Inference frame-
work is deployed on both server-side and high-performance
personal computers. Utilizing the Paddle toolkit, the goal is
to minimize model size while maintaining high accuracy, fa-
cilitating deployment on edge devices.



Figure 3: DB (Differentiable Binarization) method architec-
ture.

Edge Device: Handles model deployment and inference.
The NVIDIA Jetson series, particularly the Jetson Xavier
NX, is ideal for building an edge computing platform due
to its small size, low power consumption, and high com-
putational capability. Serving as a mediator between the
cloud and terminal, the Paddle Lite framework on the Jet-
son Xavier NX primarily conducts OCR inference tasks at
the edge. The inference process is offline within the NX
box, ensuring user privacy without the need for internet data
transmission.

Terminal Device: Initiates and receives OCR tasks. Ter-
minals use interfaces to call APIs provided by edge devices,
without storing or inferring the recognition model, thus con-
serving computational and storage resources. They connect
to edge devices through interface calls or commands. For
OCR recognition, terminals only need to send image sam-
ples; the edge device processes these samples and promptly
returns the results, completing the inference process.

OCR Text Detection Algorithm
Differentiable Binarization (DB) algorithm, designed for
segmenting scene text, transforms segmentation-generated
probability maps into bounding boxes and text regions
through a binarization step. Unlike traditional methods us-
ing fixed thresholds, DB employs a differentiable operation,
integrating binarization into the segmentation network for
adaptive thresholding.

The overall DB method is depicted in Figure 3. The DB
method processes the input image through the FPN network
(with ResNet as the backbone), generating feature maps of
varying sizes. These maps are then upsampled by a factor of
two and merged to form quarter-sized feature maps. These
maps, after Concat operation, create the final feature map
F, used to produce probability map P and threshold map T.
These maps are processed through a differentiable binariza-
tion formula (with k set to 50) to produce a binary map, ul-
timately generating text detection boxes.

Besides, the DB method possesses differentiable proper-
ties, addressing the issue of non-differentiable gradients dur-
ing training. During gradient backpropagation, the binary
cross-entropy loss is given by:

CELoss = −y log(f(x))− (1− y) log(1− f(x)). (1)

For the positive sample loss, l+, and negative sample loss,
l−, the following expressions are derived:

l+ = − log

(
1

1 + e−kx

)
, (2)

Figure 4: SVTR network structure.

l− = − log

(
1− 1

1 + e−kx

)
. (3)

OCR Text Recognition

The SVTR (Segmented Variable Text Recognition) network
structure, as depicted in Figure 4, is a specialized, three-
stage, decremental network designed for recognizing text
characters in images. The network initially takes an image
of size H ×W × 3 as input.

In the first stage, the progressive overlapping patch em-
bedding stage, the network uses two consecutive 3× 3 con-
volutional kernels (with a stride of 2) for patch embed-
ding. This transforms the original image into patches of size
H
4 × W

4 , each with a channel dimension D0, representing
”character components” of the text.

The next stage, the mixing block stage, addresses the need
for two types of features in recognition: local component
patterns (such as stroke shape features) and inter-character
correlations. To capture these, two mixing blocks are uti-
lized: Global Mixing evaluates dependencies between all
character components, while Local Mixing assesses corre-
lations within a predefined window among the components.

In the merging stage, the network reshapes the output fea-
ture map from the last mixing block into a dimension of
h × w × di − 1. It then applies 3 × 3 convolutional ker-
nels with different strides on height and width, followed by
a layer normalization layer, to produce the final output fea-
ture with dimensions h

2 × w × di. This reduces the height
while maintaining the width.

Finally, in the combining and prediction stage, the net-
work pools the height to 1 and connects a fully connected
layer, a non-linear activation layer, and a dropout layer.
This compresses the character components into a feature se-
quence, where each element is a vector of length D3. An
N -class linear classifier is then used for character recogni-
tion, transcribing a sequence of length W

4 , resulting in a final
output dimension of 1× W

4 ×D3. Thus, the SVTR network
effectively processes and recognizes text content in images.

Edge Computing Task Offloading

We define the computational resources at the edge as fe, the
computational density (in terms of CPU cycles per bit) as
we, and the size of the task input (in bits) as te. Thus, the
computational delay for offloading an OCR computing task



Jetson Xavier NX Specifications
AI Performance 21 TOPS
GPU 384-core NVIDIA Volta GPU with 48 Tensor Cores
CPU 6-core NVIDIA Carmel ARM v8.2 64-bit CPU, 6MB L2 + 4MB L3
Memory 8GB 128-bit LPDDR4x, 59.7GB/s
Storage 16GB eMMC 5.1
Power Consumption 10 Watts — 15 Watts — 20 Watts
PCIe 1 x1 (PCIe 3.0) + 1 x4 (PCIe 4.0), Total 144GT/s
CSI Camera Up to 6 cameras (24 via virtual channels), 14 lanes MIPI CSI-2, D-PHY 1.2 (up to 30Gbps)
DL Accelerator 2x NVIDIA Engines
Vision Accelerator 7-way VLIW Vision Processor
Network 10/100/1000 BASE-T Ethernet

Table 1: Jetson Xavier NX Performance Parameters

from the terminal to the edge can be represented as:

dec =
ωete
fe

. (4)

Task offloading requires data transmission to the edge de-
vice through the uplink wireless channel. We consider the
Orthogonal Frequency-Division Multiple Access (OFDMA)
scheme for task offloading. Let PT represent the transmis-
sion power, he denote the signal attenuation coefficient, le
indicate the distance from the terminal to the edge end, α is
the path loss exponent, N0 stands for the noise power, and
Iue represents interference.

The spectral efficiency of the uplink transmission between
the terminal and edge can be expressed as:

ηe = log2

(
1 +

PT |he|2l−α
e

N0 + Iue

)
. (5)

Let B denote the channel bandwidth. Therefore, the wire-
less transmission delay between the terminal and edge can
be represented as:

dute =
te
beηe

. (6)

Next, the task is offloaded, and the result is downloaded
back to the terminal. Since the downlink channel for down-
loading results is unknown, to simplify the system model,
we use the average downlink transmission rate as an estimate
for the downlink channel. Let U denote the ratio of the result
size to the input data size. The wireless transmission delay
for downloading results from the edge can be expressed as:

ddte =
µete
rde

. (7)

Thus, the total system delay can be represented as:

De(b, f) = dce + dute + ddte . (8)

Experiments
Evaluation Metrics
To comprehensively evaluate the performance of the recog-
nition, we utilizes the Harmonic mean (Hmean), also known
as the F1-score, on a self-annotated dataset. The Hmean is
the harmonic average of precision and recall. Precision is

defined as the ratio of correctly predicted positive instances
to the total predicted positive instances, while recall is the
ratio of correctly predicted positive instances to the total ac-
tual positive instances. Additionally, accuracy is introduced
as the proportion of all correctly predicted instances (includ-
ing both positive and negative classes) to the total instances,
which is a critical metric for overall performance.

P =
TP

TP + FP
, R =

TP

TP + FN
, (9)

Hmean =
2

1
P + 1

R

=
2 · P ·R
P +R

, (10)

Accuracy =
TP + TN

P +N
. (11)

Edge Device
The primary tasks of OCR detection and recognition are per-
formed on edge devices, specifically the Jetson Xavier NX
in this project. Its deep learning framework is deployed us-
ing Jetpack version 5.0.2. Table 1 details the configuration
information of the deep learning libraries under this version,
and describes the system performance of the Jetson Xavier
NX.

Model Training
The PP-OCR series models provided by PaddleOCR ex-
hibit good generalizability in common scenarios. In verti-
cal scenarios, if a more optimal model performance is de-
sired, model fine-tuning can be employed to further enhance
the accuracy of the PP-OCR series detection and recognition
models. In this OCR task, the focus is mainly on the detec-
tion and recognition of flat text in invoices. For this specific
scenario, the project collects relevant data and conducts fur-
ther training and fine-tuning based on self-annotated datasets
using the PP-OCR pretrained models.

The project utilizes the PP-OCRv3 pretrained model com-
bined with proprietary data for further optimization. For text
detection, the DB network pretrained model is used, and for
text recognition, the SVTR network pretrained model is em-
ployed. Model training is completed on cloud servers, with
the training environment configuration detailed in Table 2.
During model fine-tuning, incorporating real-world general



Jetpack TensorRT cuDNN CUDA OpenCV
5.0.2 8.4.1 8.4.1 11.4.14 4.5.4

Table 2: Jetpack 5.0.2 Environment Dependencies

scenario data can further enhance model accuracy and gen-
eralizability. Over 500 annotated images are used to fine-
tune the detection pretrained model, with separate training
adjustments for both the detection and recognition models.
For the detection model training, batch size is set to 2 and
learning rate to 0.00005. For the recognition model training,
batch size is set to 32 and learning rate to 0.000025. Other
parameters are modified according to specific needs.

Model Conversion
After training, models undergo quantization and need to
be converted into inference models for use in inference
tasks. The inference models can be further converted into
PaddleLite format models, facilitating deployment on mo-
bile devices. Paddle-Lite is a high-performance, lightweight,
flexible, and easily extendable deep learning inference
framework. It further optimizes inference models to produce
Naive Bayes model suitable for deployment in mobile/IoT
environments. It is generally recommended to base the con-
version on quantized models, as this allows the model to be
stored and inferred in INT8 format, thereby further reducing
the model size and improving speed.

The results of the quantized model conversion, including
format and size, are illustrated in Table 3.

Model Size
Detection inference model 2.4M
Recognition inference model 5.8M

Table 3: Quantized Model Conversion Results - Size

Model Hmean

pp-ocrv3 Detection Pretrained Model 52.65%
Self-Trained Model 59.03%

Table 4: Quantized Model Conversion Results - Hmean

Results
Detection Performance
As demonstrated in Table 4, the self-trained model exhibits
a notable improvement in the Hmean metric compared to the
pre-trained pp-ocrv3 model. Specifically, the Hmean of the
self-trained model reached 59.03%, while that of the pre-
trained model stood at 52.65%. This quantitative analysis
distinctly validates the superior performance of the model
trained on a specific dataset. Furthermore, it underscores that
tailored optimization for OCR technology on edge devices
can significantly enhance its effectiveness in practical appli-
cations.

Model Accuracy
pp-ocrv3 Recognition Pretrained Model 82.03%
Self-Trained Model 95.36%

Table 5: Quantized Model Conversion Results - Accuracy

Process Average Duration
Text Detection Computation 0.088s
Text Recognition Computation 0.219s
Uplink Transmission 0.152s
Downlink Transmission 0.203s
Total Edge Computing Latency 0.662s
End-Terminal Computing Delay 1.132s

Table 6: Comparison of Total Latency for OCR Task in Edge
Computing vs. End-Terminal Computing

Recognition Performance

As shown in Table 5, the self-trained model demonstrated
a substantial increase of 13.33% in recognition accuracy
over the pre-trained pp-ocrv3 model. This significant im-
provement in performance indicates that customized train-
ing and optimization can greatly enhance the effectiveness
of OCR models in practical applications. Such advance-
ments are crucial for scenarios that demand high-precision
text recognition, such as automated document processing
and real-time text analysis.

System Latency

Table 6 details average latency at each OCR task stage in
edge computing, encompassing text detection, recognition
computation, uplink, and downlink transmission. The total
edge computing latency is notably 0.662 seconds, signifi-
cantly surpassing the 1.132 seconds computation delay on
end-terminal devices. This efficiency advantage underscores
edge computing’s effectiveness for OCR tasks, vital for de-
signing responsive real-time OCR systems, particularly in
bandwidth-limited or delay-sensitive environments.

Conclusion

This study aims to efficiently apply OCR technology in edge
networks, fully leveraging edge computing as a distributed
model in the rapidly advancing landscape of IoT technology.
By subdividing the OCR task into multiple sub-tasks and of-
floading them to edge devices, we effectively optimized for
resource-constrained edge devices. This strategy facilitates
the deployment of OCR models on edge nodes, enabling im-
mediate recognition of real-time image text. Our approach
successfully reduced transmission latency and bandwidth
consumption while maintaining high accuracy with a sig-
nificant decrease in system latency. This research provides
valuable support for OCR applications in edge environments
and offers insights into the development of IoT and edge
computing technologies.
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